Automatic Ischemic Stroke Lesion Segmentation in Multi-spectral MRI Images Using Random Forests Classifier
نویسندگان
چکیده
This paper presents an automated segmentation framework for ischemic stroke lesion segmentation in multi-spectral MRI images. The framework is based on a random forests (RF), which is an ensemble learning technique that generates several classifiers and combines their results in order to make decisions. In RF, we employ several meaningful features such as intensities, entropy, gradient etc. to classify the voxels in multi-spectral MRI images. The segmentation framework is validated on MICCAI 2015 ISLES challenge training data sets. The performance of the framework is evaluated relative to the manual segmentation (ground truth). The experimental results demonstrate the robustness of the segmentation framework, and that it achieves reasonable segmentation accuracy for segmenting the sub-acute ischemic stroke lesion in multi-spectral MRI images.
منابع مشابه
Classifiers for Ischemic Stroke Lesion Segmentation: A Comparison Study.
MOTIVATION Ischemic stroke, triggered by an obstruction in the cerebral blood supply, leads to infarction of the affected brain tissue. An accurate and reproducible automatic segmentation is of high interest, since the lesion volume is an important end-point for clinical trials. However, various factors, such as the high variance in lesion shape, location and appearance, render it a difficult t...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملMs-lesion Segmentation in Mri with Random Forests
Multiple sclerosis (MS) is a common autoimmune disorder, whose diagnosis and study often relies on the extraction of biomarkers from magnetic resonance imaging (MRI) scans. Manual segmentation of MS lesions suffers from large intraand inter-rater differences, whereas automatic methods promise reproducibility and enhanced consistency, especially for tracking the disease progress over time. To te...
متن کاملHistogram-based gravitational optimization algorithm on single MR modality for automatic brain lesion detection and segmentation
Magnetic resonance imaging (MRI) is a very effective medical imaging technique for the clinical diagnosis and monitoring of neurological disorders. Because of intensity similarities between brain lesions and normal tissues, multispectral MRI modalities are usually applied for brain lesion detection. However, the time and cost restrictions for collecting multi-spectral MRI, and the issue of poss...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015